28,248 views
35 votes
35 votes
Prove:1/sin²A-1/tan²A=1​

User Nalply
by
2.7k points

2 Answers

20 votes
20 votes

Explanation:

1/sin^2A -cos^2A/sin^2 A. ~tan = sin/cos

(1-cos^2)/sin^2A. ~ take lcm

sin^2A/sin^ A. ~ 1-cos^2A = sin^2A

1

for more free ans check bio

User Olivier Dulac
by
2.5k points
14 votes
14 votes

Answer:


\displaystyle (1)/(\sin^2x)-(1)/(\tan^2x)=1

Explanation:

Prove that:


\displaystyle (1)/(\sin^2x)-(1)/(\tan^2x)=1

Recall that by definition:


\displaystyle \tan x=(\sin x)/(\cos x)

Therefore,


\displaystyle \tan^2x=\left ((\sin^2x)/(\cos^2x)\right)^2=(\sin^2x)/(\cos^2x)

Substitute
\displaystyle \tan^2x=(\sin^2x)/(\cos^2x) into
\displaystyle (1)/(\sin^2x)-(1)/(\tan^2x)=1:


\displaystyle (1)/(\sin^2x)-(1)/((\sin^2x)/(\cos^2x))=1

Simplify:


\displaystyle (1)/(\sin^2x)-(\cos^2x)/(\sin^2x)=1

Combine like terms:


\displaystyle (1-\cos^2x)/(\sin^2x)=1

Recall the following Pythagorean Identity:


\sin^2x+\cos^2x=1 (derived from the Pythagorean Theorem)

Subtract
\cos^2x from both sides:


\sin^2=1-\cos^2x

Finish by substituting
\sin^2=1-\cos^2x into
\displaystyle (1-\cos^2x)/(\sin^2x)=1:


\displaystyle (\sin^2x)/(\sin^2x)=1,\\\\1=1\:\boxed{\checkmark\text{ True}}

User AkselK
by
2.9k points