38.3k views
5 votes
A phone salesperson is paid a minimum weekly salary and a commission for each phone sold, as shown in the table. Confirm that the relationship is linear and give the constant rate of change and the initial value. Write it in the form of y=mx+b. *

User Frogcjn
by
3.4k points

2 Answers

5 votes

Final answer:

The relationship between a phone salesperson's salary and the number of phones sold can be represented by a linear equation. The equation is in the form y = mx + b, where m represents the commission per phone sold and b represents the minimum weekly salary. The constant rate of change (m) and initial value (b) can be determined from the given information.

Step-by-step explanation:

The relationship between the phone salesperson's salary and the number of phones sold can be expressed as a linear equation. Let y represent the total salary and x represent the number of phones sold. The equation can be written as y = mx + b, where m represents the constant rate of change (commission per phone sold) and b represents the initial value (minimum weekly salary).

From the table, we can determine the values of m and b. For example, if the salesperson's minimum weekly salary is $200 and they receive a $50 commission for each phone sold, the linear equation would be y = 50x + 200.

The constant rate of change (m) in this case is 50, which means that for every phone sold, the salesperson earns an additional $50. The initial value (b) is 200, representing the minimum weekly salary regardless of the number of phones sold.

User StefanP
by
3.7k points
4 votes

Answer:

i do not know that one

Step-by-step explanation:

I usely use desmos but thanks to my idiot dad i can't do that after 2 weeks he should be punished

User Ed Ost
by
3.2k points