Answer:
Option B, False
Explanation:
Step 1: Get the surface area formulas for both shapes
Surface Area Formula for Cone:
![A = \pi * r(r + \sqrt{h^(2) + r^(2)})](https://img.qammunity.org/2022/formulas/mathematics/high-school/hx1fnog8e15njzym7t98k789j0bqlklqwe.png)
Surface Area Formula for Cylinder:
![A = 2\pi rh+2\pi r^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/41y4rohjjlpvc00a8ebyjfsumofxhwh8en.png)
Step 2: Plug in the values and solve
Cone:
![A = \pi * r(r + \sqrt{(3r)^(2) + r^(2)})](https://img.qammunity.org/2022/formulas/mathematics/high-school/4wn0fgumh3m83b5rdz8qme60l0wiiujeer.png)
Cone:
![A = \pi r^(2) + \pi √(10)r^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/g8cu8m6o8y1bsuin2r6jtpr3f9241vmc33.png)
Cylinder:
![A = 2\pi r*r+2\pi r^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/pdxj68ir0srr40eepku5nbpgzry703qlbc.png)
Cylinder:
![A=4 \pi r^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/h01jtpxga56yzu1bjo1bac1v9x0a8u0smr.png)
Step 3: Compare
![\pi r^(2) + \pi √(10)r^(2)\\eq 4 \pi r^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/9ygkw3c36u1i5cimrupuqje08cn51001m5.png)
They are not equal, therefore the answer is False.
Answer: Option B, False