Answer:
![Denominator= (x - 10)(x+5)(x-4)](https://img.qammunity.org/2022/formulas/mathematics/college/braqot20s50u37iu485tnshsysh8xthfd9.png)
![M = ((7x - 5)(x-4))/((x+5)(x - 10)(x-4))](https://img.qammunity.org/2022/formulas/mathematics/college/eyry1nzwqcjtg772at7vg88goljko1jbm4.png)
![N = ((3x - 8)(x + 5))/((x-4)(x-10)(x + 5))](https://img.qammunity.org/2022/formulas/mathematics/college/fhaxx1t7lnwxvqqv234d7pqbhprjt7wwsn.png)
![M + N = (10x^2-26x -20)/((x+5)(x - 10)(x-4))](https://img.qammunity.org/2022/formulas/mathematics/college/pmd38yrvcgv6spu4amfcaqbh754g1yacmj.png)
Explanation:
Given
![M = (7x - 5)/(x^2 -5x - 50)](https://img.qammunity.org/2022/formulas/mathematics/college/uxa96s9a8i4rpfh70arznhiq6b80ahgthw.png)
![N = (3x - 8)/(x^2 -14x+ 40)](https://img.qammunity.org/2022/formulas/mathematics/college/4miiy7hfzoa3747ntn0er6zlp8rllym7dl.png)
Solving (a): A common denominator of M and N.
To do this, we simply get the LCM of both denominators
![M = x^2 - 5x - 50](https://img.qammunity.org/2022/formulas/mathematics/college/4ue2a4au9r4maistkxyup8sic1ohoakf4q.png)
![N = x^2 - 14x + 40](https://img.qammunity.org/2022/formulas/mathematics/college/7brl0uky93ud1curtr1v78xrkx7705d0n1.png)
Factorize both:
![M = (x - 10)(x + 5)](https://img.qammunity.org/2022/formulas/mathematics/college/mvkmmpro55pw9usd604lsh0tq5xgrpsl7t.png)
![N = (x- 10)(x - 4)](https://img.qammunity.org/2022/formulas/mathematics/college/d03p4ri14xn9ypyx57he1qzv1ytdc205a0.png)
The LCM is
![LCM= (x - 10)(x+5)(x-4)](https://img.qammunity.org/2022/formulas/mathematics/college/wbsngocjv468vccsxg08ojvyzsrwcheagh.png)
Hence, the common denominator is:
![Denominator= (x - 10)(x+5)(x-4)](https://img.qammunity.org/2022/formulas/mathematics/college/braqot20s50u37iu485tnshsysh8xthfd9.png)
Solving (b): Rewrite M
![M = (7x - 5)/(x^2 -5x - 50)](https://img.qammunity.org/2022/formulas/mathematics/college/uxa96s9a8i4rpfh70arznhiq6b80ahgthw.png)
Factor the denominator:
![M = (7x - 5)/((x+5)(x - 10))](https://img.qammunity.org/2022/formulas/mathematics/college/5dbmtttp2rt7f53qejuvtsvg8bgz9zr7hk.png)
The LCM calculated in (a) above is:
![LCM= (x - 10)(x+5)(x-4)](https://img.qammunity.org/2022/formulas/mathematics/college/wbsngocjv468vccsxg08ojvyzsrwcheagh.png)
So, we have to multiply the numerator and denominator of M by (x - 4)
The expression becomes:
![M = (7x - 5)/((x+5)(x - 10)) * (x - 4)/(x-4)](https://img.qammunity.org/2022/formulas/mathematics/college/wqh4kv0kkje6due3jd9djdzeeaeiwowx41.png)
![M = ((7x - 5)(x-4))/((x+5)(x - 10)(x-4))](https://img.qammunity.org/2022/formulas/mathematics/college/eyry1nzwqcjtg772at7vg88goljko1jbm4.png)
Solving (c): Rewrite N
![N = (3x - 8)/(x^2 -14x+ 40)](https://img.qammunity.org/2022/formulas/mathematics/college/4miiy7hfzoa3747ntn0er6zlp8rllym7dl.png)
Factor the denominator:
![N = (3x - 8)/((x-4)(x-10))](https://img.qammunity.org/2022/formulas/mathematics/college/wqx4k9coval0eurg4al9ege0bu73yhtj6s.png)
The LCM calculated in (a) above is:
![LCM= (x - 10)(x+5)(x-4)](https://img.qammunity.org/2022/formulas/mathematics/college/wbsngocjv468vccsxg08ojvyzsrwcheagh.png)
So, we have to multiply the numerator and denominator of N by (x + 5)
The expression becomes:
![N = (3x - 8)/((x-4)(x-10)) * (x + 5)/(x + 5)](https://img.qammunity.org/2022/formulas/mathematics/college/28swusuois533otuwpkdr17p1ql3rdut98.png)
![N = ((3x - 8)(x + 5))/((x-4)(x-10)(x + 5))](https://img.qammunity.org/2022/formulas/mathematics/college/fhaxx1t7lnwxvqqv234d7pqbhprjt7wwsn.png)
(d) Solve M + N
![M + N = ((7x - 5)(x-4))/((x+5)(x - 10)(x-4)) + ((3x - 8)(x + 5))/((x-4)(x-10)(x + 5))](https://img.qammunity.org/2022/formulas/mathematics/college/i3n1rx2f1fdq2z86804x7u7jnte6r75nsu.png)
Take LCM
![M + N = ((7x - 5)(x-4) + (3x - 8)(x + 5))/((x+5)(x - 10)(x-4))](https://img.qammunity.org/2022/formulas/mathematics/college/um6xdaa5uokk2teodddl0tpdjuqvhw4apy.png)
Open brackets
![M + N = (7x^2 - 28x - 5x + 20 + 3x^2 + 15x - 8x - 40)/((x+5)(x - 10)(x-4))](https://img.qammunity.org/2022/formulas/mathematics/college/lfcp9gv2woin8bhh9l93im5kqwt8a18b7d.png)
Collect Like Terms
![M + N = (7x^2 + 3x^2- 28x - 5x + 15x - 8x + 20 - 40)/((x+5)(x - 10)(x-4))](https://img.qammunity.org/2022/formulas/mathematics/college/sc4zcep923nmg3fifd8ru8plr33s1gno47.png)
![M + N = (10x^2-26x -20)/((x+5)(x - 10)(x-4))](https://img.qammunity.org/2022/formulas/mathematics/college/pmd38yrvcgv6spu4amfcaqbh754g1yacmj.png)