222k views
16 votes
Write an equation for the line that is parallel to the given line and that passes through the given point.

y = 2/3x + 5 (-3, 8)

User Mahesmohan
by
7.9k points

1 Answer

3 votes

keeping in mind that parallel lines have exactly the same slope, let's check for the slope of the equation above


y=\stackrel{\stackrel{m}{\downarrow }}{\cfrac{2}{3}}x+5\qquad \impliedby \begin{array} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}

so we're really looking for the equation of a line whose slope is 2/3 and passes through (-3 , 8)


(\stackrel{x_1}{-3}~,~\stackrel{y_1}{8})\qquad \qquad \stackrel{slope}{m}\implies \cfrac{2}{3} \\\\\\ \begin{array} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{8}=\stackrel{m}{\cfrac{2}{3}}(x-\stackrel{x_1}{(-3)}) \\\\\\ y-8=\cfrac{2}{3}(x+3)\implies y-8=\cfrac{2}{3}x+2\implies y=\cfrac{2}{3}x+10

User ConsultUtah
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories