Answer:
4.0 meters, ∠C = 39°, ∠A = 51°
Explanation:
Firstly, our diagram shows us that the given triangle is actually a right triangle. So we can use the Pythagorean Theorem to solve for the height of the chain:
![a^(2) +b^(2) =c^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/k7qt5wkjzyq5o063duwhj1rojahhnrxc3q.png)
![(3.3)^(2) +b^(2) =(5.2)^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ivul8bftk2m18w2si9i9tgn2lrcvvzlxgw.png)
![b^(2) =(5.2)^(2)-(3.3)^(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zy61b3ni29ikmj4jm1zztwyovcfskfv5d8.png)
![b =\sqrt{(5.2)^(2)-(3.3)^(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/7ur2hd3rl9yy5zlh1ito6imuxt6k6kt0z6.png)
![b=4.0187...](https://img.qammunity.org/2022/formulas/mathematics/high-school/68zpy6cqz3jkbvf0hse5lv2fh7aqvzhhal.png)
![b=4.0 m](https://img.qammunity.org/2022/formulas/mathematics/high-school/bkzdllhzzuc6anye0byg0wf02ok49o6ws4.png)
Now, we can use the Law of Cosines to figure out one of the acute angles:
![c^(2) =a^(2) +b^(2) -2ab(cos(C))](https://img.qammunity.org/2022/formulas/mathematics/high-school/kv57z1svt03gp0ezuu78rvtyl86u7gye9d.png)
![(3.3)^(2) =(4.0)^(2) +(5.2)^(2) -2(4.0)(5.2)(cos(C))](https://img.qammunity.org/2022/formulas/mathematics/high-school/omxk17d1nmksq1js922bsl6sod30lnh3zr.png)
![cos(C)=((3.3)^(2)-(4.0)^(2) -(5.2)^(2))/(-2(4.0)(5.2))](https://img.qammunity.org/2022/formulas/mathematics/high-school/k0cva4gfn1c0eeuxpzr92amuvvoxzio0ys.png)
![C=cos^(-1)( ((3.3)^(2)-(4.0)^(2) -(5.2)^(2))/(-2(4.0)(5.2)))](https://img.qammunity.org/2022/formulas/mathematics/high-school/8ie4acgnjov7f6ydaynya8zmbgfndh11v9.png)
![C=39.3915...](https://img.qammunity.org/2022/formulas/mathematics/high-school/6he8pzv6f20qu7ndyzgl4cvemslnew4ojo.png)
∠C = 39°
And since we know that all angles in a triangle add up to 180°:
∠A + ∠B + ∠C = 180
∠A + 90 + 39 = 180
∠A = 180 - 90 - 39
∠A = 51°
However, you should always review any answers on the Internet and make sure they are correct! Check my work to see if I made any mistakes!