184,234 views
44 votes
44 votes
Evaluate ∫4x cos(2-3x)dx

User George Bafaloukas
by
3.0k points

1 Answer

28 votes
28 votes

Answer:


{ \sf{ \int 4x \cos(2 - 3x) dx = {4x}^(2) \cos(2 - 3x) + c }}

Explanation:

From integration by parts:


{ \boxed{ \bf{ \int u \: (dv)/(dx) = uv - \int v \: (du)/(dx) }}}

let u be cos(2-3x) and let dv/dx be 4x:


{ \sf{ (du)/(dx) = 3 \sin(2 - 3x) }} \\ \\ { \sf{ v = \int 4x = 2 {x}^(2) }}

Substitute in formular box:


{ \sf{ = (2 {x}^(2) * \cos(2 - 3x)) - \int 2 {x}^(2) .3 \sin(2 - 3x) dx}} \\ = { \sf{2 {x}^(2) ( \cos(2 - 3x) - 3 \int \sin(2 - 3x)dx }} \\ { \sf{ = 2 {x}^(2) ( \cos(2 - 3x) - 3( - (1)/(3) \cos(2 - 3x) ) + c}} \\ { \sf{ = {4x}^(2) \cos(2 - 3x) + c}}

User Zusee Weekin
by
2.4k points