Given:
AD is an angle bisector in triangle ABC.
.
To find:
The value of
.
Solution:
AD is an angle bisector in triangle ABC.
![m\angle CAD=m\angle BAD=(m\angle CAB)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/x0cwgaa7m45b7m161fbjnj8xeav2cbbl8k.png)
![m\angle CAD=m\angle BAD=(44^\circ)/(2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/nifq6myci1xuzdzau4uw86klskihhcw317.png)
![m\angle CAD=m\angle BAD=22^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/r5h58ow6h0b8r7hdt8d5c0ukwspmb14808.png)
According to the angle sum property, the sum of all interior angles of a triangle is 180 degrees.
Using angle sum property in triangle CAD, we get
![m\angle CAD+m\angle ADC+m\angle ACB=180^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/5q3lz6hwuke6tcyaczxbezjae0qqzsdf69.png)
![22^\circ+m\angle ADC+72^\circ=180^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/t5czu9zlxdw1fwxm3cr7pak7fo66g7l48v.png)
![m\angle ADC+94^\circ=180^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/jyryumf1596i3n1j52zfumr0fejmphg3ww.png)
![m\angle ADC=180^\circ-94^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/m778zebxugtaklls7ply463mhsyaegr370.png)
![m\angle ADC=86^\circ](https://img.qammunity.org/2022/formulas/mathematics/high-school/c4oulvyxfkzu69dgpsqxpwtht5ag98ezd9.png)
Therefore, the angle of angle ADC is
.