180k views
22 votes
Please help if you can thanks ^^

Please help if you can thanks ^^-example-1
User Cemen
by
5.5k points

1 Answer

7 votes

Given:

AD is an angle bisector in triangle ABC.
m\angle CAB=44^\circ, m\angle ACB=72^\circ, m\angle ABC=64^\circ.

To find:

The value of
m\angle ADC.

Solution:

AD is an angle bisector in triangle ABC.


m\angle CAD=m\angle BAD=(m\angle CAB)/(2)


m\angle CAD=m\angle BAD=(44^\circ)/(2)


m\angle CAD=m\angle BAD=22^\circ

According to the angle sum property, the sum of all interior angles of a triangle is 180 degrees.

Using angle sum property in triangle CAD, we get


m\angle CAD+m\angle ADC+m\angle ACB=180^\circ


22^\circ+m\angle ADC+72^\circ=180^\circ


m\angle ADC+94^\circ=180^\circ


m\angle ADC=180^\circ-94^\circ


m\angle ADC=86^\circ

Therefore, the angle of angle ADC is
86^\circ.

User Tonny Xu
by
5.6k points