36,708 views
31 votes
31 votes
Find the slope of
(6,-3)(-2,-3)

User Groco
by
3.1k points

2 Answers

7 votes
7 votes

To calculate the slope use the gradient formula.


\bf \Large \: m \: = \: (y_2 \: - \: y_ 1)/(x_2 \: - \: x_ 1) \\


\bf \large\longrightarrow \: y_2 \: = \: - 3


\bf \large\longrightarrow \: y_1 \: = \: - 3


\bf \large\longrightarrow \: x_1 \: = \: 6


\bf \large\longrightarrow \: x_2 \: = \: - 2

Substuting the values


\bf \Large \: m \: = \: (( - 3 )\: - \: (- 3))/( (- 2) \: - \: 6) \\


\bf \Large \: m \: = \: ( \: 0 )/( - 8 \: \: ) \\


\bf \Large \: m \: = \: \cancel( \: 0 )/( - 8 \: \: ) \: ^(0) \\


\bf \Large \: m \: = \: 0

Hence , the slope is 0

User Grebulon
by
2.7k points
14 votes
14 votes

Answer:

0

Explanation:

We can find the slope by using the slope function

m = (y2-y1)/(x2-x1)

= (-3 - -3)/(-2 - 6)

= (-3+3)/(-2-6)

= 0/-8

= 0

User Elliot Roberts
by
2.8k points