Answer:
The excess energy over that needed for dissociation is 3.712 × 10⁻¹⁹ J
Step-by-step explanation:
Given the data in the question;
wavelength of proton λ = 231 nm = 231 × 10⁻⁹ m
we determine the energy of the proton;
E = hc / λ
where h is plank constant ( 6.626 × 10⁻³⁴ JS )
and c is the speed of light ( 3 × 10⁸ m/s )
we substitute
E = [ ( 6.626 × 10⁻³⁴ JS ) × ( 3 × 10⁸ m/s ) ] / [ 231 × 10⁻⁹ m ]
E = 8.61 × 10⁻¹⁹ J
we know that, bond energy for H-I is 295 kJ/mol
so, H = 295 × 10³ J/mol
Now, energy to dissociate HI will be;
⇒ H / N
where N is the Avogadro's number ( 6.023 × 10²³ mol⁻¹ )
energy to dissociate HI = ( 295 × 10³ J/mol ) / ( 6.023 × 10²³ mol⁻¹ )
= 4.898 × 10⁻¹⁹ J
Therefore, Excess energy over dissociation will be;
⇒ ( 8.61 × 10⁻¹⁹ J ) - ( 4.898 × 10⁻¹⁹ J )
= 3.712 × 10⁻¹⁹ J
The excess energy over that needed for dissociation is 3.712 × 10⁻¹⁹ J