Answer:
The shortest side of the triangle is 18
Explanation:
Let the sides the triangle be x, y and z.
From the question, the perimeter of the rectangle is 64, that is
x + y + z = 64 ...... (1)
Also, the ratio of two of its sides is 4:3, that is x:y = 4:3, then we can write that x/y = 4/3 ⇒ 3x = 4y ...... (2)
The third side, z, is 20 less than the sum of the other two, that is
z + 20 = x + y ...... (3)
Substitute equation (3) into (1)
Then,
z + 20 + z = 64
2z +20 = 64
2z = 64 - 20
2z = 44
z = 44/2 k
z = 22
From equation (3)
z + 20 = x + y
Then, k
22 + 20 = x +y
42 = x + y
x = 42 - y ...... (4)
Substitute this into equation 2
3x = 4y
3(42-y) = 4y
126 - 3y = 4y
4y + 3y = 126
7y = 126
y = 126/7
y = 18
Substitute this into equation (4)
x = 42 - y
x = 42 - 18
x = 24
∴ x = 24, y = 18 and z = 22
Hence, the shortest side of the triangle is 18.