147,793 views
24 votes
24 votes
Find the general solution for:-


sin\:x \:cos\: 3x+cos\:x\: sin\:3x=tan140


~Please show your work
~Thank you!

User Bloafer
by
3.0k points

1 Answer

10 votes
10 votes

Answer:


\rm \displaystyle x \approx \bigg \{ {59.3}^( \circ) + (n\pi)/(2) , - {14.3}^( \circ) + (n\pi)/(2) \bigg \}

Explanation:

we would like to solve the following trigonometric equation:


\rm \displaystyle \sin(x) \cos(3x) + \cos(x) \sin(3x) = \tan( {140}^( \circ) )

the left hand side can be rewritten using angle sum indentity of sin which is given by:


\rm \displaystyle \sin( \alpha + \beta ) = \sin( \alpha ) \cos( \beta ) + \cos( \alpha ) \sin( \beta )

therefore Let


  • \alpha = x

  • \beta = 3x

Thus substitute:


\rm \displaystyle \sin(x + 3x) = \tan( {140}^( \circ) )

simplify addition:


\rm \displaystyle \sin(4x) = \tan( {140}^( \circ) )

keep in mind that sin(t)=sin(π-t) saying that there're two equation to solve:


\begin{cases} \rm \displaystyle \sin(4x) = \tan( {140}^( \circ) ) \\ \\ \displaystyle \sin(\pi - 4x) = \tan( {140}^( \circ) ) \end{cases}

take inverse trig and that yields:


\begin{cases} \rm \displaystyle 4x= { \sin}^( - 1) ( \tan( {140}^( \circ) ) ) \\ \\ \displaystyle \pi - 4x = { \sin}^( - 1)( \tan( {140}^( \circ) ) ) \end{cases}

add π to both sides of the second equation and that yields:


\begin{cases} \rm \displaystyle 4x= { \sin}^( - 1) ( \tan( {140}^( \circ) ) ) \\ \\ \displaystyle - 4x = { \sin}^( - 1)( \tan( {140}^( \circ) ) ) + \pi\end{cases}

sin function has a period of 2nπ thus add the period:


\begin{cases} \rm \displaystyle 4x= { \sin}^( - 1) ( \tan( {140}^( \circ) ) ) + 2n\pi\\ \\ \displaystyle - 4x = { \sin}^( - 1)( \tan( {140}^( \circ) ) ) + \pi + 2n\pi\end{cases}

divide I equation by 4 and II by -4 which yields:


\begin{cases} \rm \displaystyle x= \frac{ { \sin}^( - 1) ( \tan( {140}^( \circ) ) ) }{4} + (n\pi)/(2) \\ \\ \displaystyle x = - \frac{{ \sin}^( - 1)( \tan( {140}^( \circ) ) ) + \pi}{4} - (n\pi)/(2) \end{cases}

recall that,-½(nπ)=½(nπ) therefore,


\begin{cases} \rm \displaystyle x= \frac{ { \sin}^( - 1) ( \tan( {140}^( \circ) ) ) }{4} + (n\pi)/(2) \\ \\ \displaystyle x = - \frac{{ \sin}^( - 1)( \tan( {140}^( \circ) ) ) + \pi}{4} + (n\pi)/(2) \end{cases}

by using a calculator we acquire:


\begin{cases} \rm \displaystyle x \approx - {14.3}^( \circ) + (n\pi)/(2) \\ \\ \displaystyle x \approx {59.3}^( \circ) + (n\pi)/(2) \end{cases}

hence,

the general solution for: for the trig equation are


\rm \displaystyle x \approx \bigg \{ {59.3}^( \circ) + (n\pi)/(2) , - {14.3}^( \circ) + (n\pi)/(2) \bigg \}

User Gopi K Mishra
by
2.4k points