Answer:
a) Irreversible, b) Reversible, c) Irreversible, d) Impossible.
Step-by-step explanation:
Maximum theoretical efficiency for a power cycle (
), no unit, is modelled after the Carnot Cycle, which represents a reversible thermodynamic process:
(1)
Where:
- Temperature of the cold reservoir, in Kelvin.
- Temperature of the hot reservoir, in Kelvin.
The maximum theoretical efficiency associated with this power cycle is: (
,
)
In exchange, real efficiency for a power cycle (
), no unit, is defined by this expression:
(2)
Where:
- Heat released to cold reservoir, in kilojoules.
- Heat gained from hot reservoir, in kilojoules.
- Power generated within power cycle, in kilojoules.
A power cycle operates irreversibly for
, reversibily for
and it is impossible for
.
Now we proceed to solve for each case:
a)
,
Since
, the power cycle operates irreversibly.
b)
,
Since
, the power cycle operates reversibly.
c)
,
Since
, the power cycle operates irreversibly.
d) Since
, the power cycle is impossible.