Answer:
option 2
Explanation:
Let { a1, a2, a3, a4, ... } be the sequence.
now the 1st term (a1) will have a value when n = 1.
similarly, all the other terms will have the values given when we substitute their respective n values into the explicit formula or fibonacci sequence.
thus, check if the 1st term is 19 by using option 2
an = 19 + (n-1)(-5)
an = 19 + (n-1)(-5) ....n = 1
an = 19 + (n-1)(-5) ....n = 1 a1 = 19 + (1-1)(-5) = 19 + 0 = 19. so it's accurate so far.
next, check a2 where n = 2.
a2 = 19 + (2-1)(-5) = 19 - 5 = 14. ....
n = 3
a3 = 19 + (3-1)(-5) = 19 - 10 = 9.
hence the conclusion from this pattern.