276,006 views
39 votes
39 votes
A quality control expert at Glotech computers wants to test their new monitors. The production manager claims they have a mean life of 83 months with a variance of 81. If the claim is true, what is the probability that the mean monitor life would be greater than 81.2 months in a sample of 146 monitors? Round your answer to four decimal places.

User Cringe
by
2.4k points

1 Answer

18 votes
18 votes

Answer:

0.9922 = 99.22% probability that the mean monitor life would be greater than 81.2 months in a sample of 146 monitors.

Explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal Probability Distribution

Problems of normal distributions can be solved using the z-score formula.

In a set with mean
\mu and standard deviation
\sigma, the z-score of a measure X is given by:


Z = (X - \mu)/(\sigma)

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean
\mu and standard deviation
\sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean
\mu and standard deviation
s = (\sigma)/(√(n)).

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

The production manager claims they have a mean life of 83 months with a variance of 81.

This means that
\mu = 83, \sigma = √(81) = 9

Sample of 146:

This means that
n = 146, s = (9)/(√(146))

What is the probability that the mean monitor life would be greater than 81.2 months in a sample of 146 monitors?

This is 1 subtracted by the p-value of Z when X = 81.2. So


Z = (X - \mu)/(\sigma)

By the Central Limit Theorem


Z = (X - \mu)/(s)


Z = (81.2 - 83)/((9)/(√(146)))


Z = -2.42


Z = -2.42 has a p-value of 0.0078.

1 - 0.0078 = 0.9922.

0.9922 = 99.22% probability that the mean monitor life would be greater than 81.2 months in a sample of 146 monitors.

User Sergeant
by
2.6k points