364,439 views
43 votes
43 votes
Triangular numbers can be represented with equilateral triangles formed by dots. The first five triangular numbers are 1, 3, 6, 10, and 15. Is there a direct variation between a triangular number and its position in the sequence? Explain your reasoning.

User Vbezhenar
by
2.6k points

2 Answers

17 votes
17 votes

Sample Response:

No, the triangular numbers are not a direct variation. There is not a constant of variation between a number and its position in the sequence. The ratios of the numbers to their positions are not equal. Also, the points (1, 1), (2, 3), (3, 6), and so on, do not lie on a line.

User Oravecz
by
2.8k points
24 votes
24 votes

Answer:

No, the triangular numbers are not a direct variation. There is not a constant of variation between a number and its position in the sequence. The ratios of the numbers to their positions are not equal. Also, the points (1, 1), (2, 3), (3, 6), and so on, do not lie on a line.

Step-by-step explanation:

this is correct on edge

User Korwalskiy
by
2.7k points