72,005 views
31 votes
31 votes
Plzzzzz help me............​

Plzzzzz help me............​-example-1
User John Pertoft
by
2.6k points

1 Answer

19 votes
19 votes

Solution

Given :-

  • sec θ + tan θ = p _______(1)

Show that :-

  • (p² - 1)/(p² + 1) = sin θ

Step-by-step explanation

we Know,

sec² θ - tan² θ = 1

(a + b )² = + + 2ab

Then,

Take L.H.S.

= (p² - 1)/(p² + 1)

keep value of p .

= {(sec θ + tan θ)² - 1}/{(sec θ + tan θ)² + 1}

= {(sec² θ + tan² θ + 2sec θ . tan θ) - 1 }/{(sec² θ + tan² θ + 2sec θ . tan θ) + 1}

= ( sec² θ - 1) + ( tan² θ + 2 sec θ . tan θ )}\{(tan² θ + 1) + ( sec ² θ + 2 sec θ . tan θ )

= { tan² θ + tan² θ + 2 sec θ . tan θ }/{(sec² θ + sec²θ + 2sec θ . tan θ]

= (2 tan ² θ + 2 sec θ . tan θ)/(2 sec ² θ + 2 sec θ . tan θ)

= {2tan θ( tan θ + sec θ)}/{2sec θ(sec θ + tan θ) }

= 2 tan θ /2 sec θ

= tan θ/sec θ

= (sin θ/cos θ)/(1/cos θ)

= sin θ

R.H.S.

That's proved .

________________

User Rahul Khatri
by
3.0k points