Answer:
The correct solution is "x = -5 and x = -8".
Explanation:
The given equation is:
⇒
![x^2+13x+40=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/zw4hfv7es689n50lkxwbrzaz6ymcd8w27b.png)
On factorizing the above equation, we get
⇒
![x^2+5x+8x+40=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/6wmobhmxacuguf0uc3cwic6oqiq3adh49d.png)
On taking "x" common, we get
⇒
![x(x+5)+8(x+5)=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/9ochoeuwusyt38xbxzcxbykw9w3eywdw0s.png)
⇒
![(x+5)(x+8)=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/p4dqjki2syzi64rw2crlv1w61z4o26pyye.png)
Now,
⇒
![x+5=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/ztt2hj3zhkv5bbwoi4ddeodzvk3dy4pvsd.png)
On subtracting "5" from both sides, we get
⇒
⇒
![x=-5](https://img.qammunity.org/2022/formulas/mathematics/high-school/xojxqreaxjy1ql8rsdwwe8e828qe8u20v0.png)
Or,
⇒
![x+8=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/q1a9tn1u46aygomfh1gurhi9c192ezurwn.png)
On subtracting "8" from both sides, we get
⇒
![x+8-8=0-8](https://img.qammunity.org/2022/formulas/mathematics/high-school/4mvr6kk7pvghl7yngegd37vrgjsovaw6sq.png)
⇒
![x=-8](https://img.qammunity.org/2022/formulas/mathematics/high-school/fz2mhy546dc7igdq3umfh5y8wsax1i93av.png)