My best interpretation of the math here is that you're talking about the line integral,
![\displaystyle \int_C \left(y+e^(\sqrt x)\right) \, dx + \left(2x + \cos\left(y^2\right)\right) \, dy](https://img.qammunity.org/2023/formulas/mathematics/high-school/x4vb76adis32nzej11iz19rc56dqad9zsi.png)
I won't bother trying to decipher what look like multiple choice solutions.
By Green's theorem, the line integral above is equivalent to
![\displaystyle \iint_D (\partial\left(2x+\cos\left(y^2\right)\right))/(\partial x) - (\partial\left(y+e^(\sqrt x)\right))/(\partial y) \, dx \, dy](https://img.qammunity.org/2023/formulas/mathematics/high-school/2rpz9n8gp1kfudpwc3leayhv9pesmt2vda.png)
where D is the set
![D = \left\{ (x, y) : 0 \le x \le 1 \text{ and } 0 \le y \le x^2 \right\}](https://img.qammunity.org/2023/formulas/mathematics/high-school/pht5mmnd653r6j1989jnfnzop2cmn9ojbl.png)
Compute the double integral:
![\displaystyle \int_0^1 \int_0^(x^2) \left(2 - 1\right) \, dy \, dx = \int_0^1 \int_0^(x^2) dy \, dx = \int_0^1 x^2 \, dx = \boxed{\frac13}](https://img.qammunity.org/2023/formulas/mathematics/high-school/t36q1sqz7zmm45pdeihe9zwbf0rjwkl4wz.png)