155,462 views
33 votes
33 votes
Solve using identities​

Solve using identities​-example-1
User Asplund
by
3.0k points

2 Answers

21 votes
21 votes

Answer:

  • - 2√14/15

Explanation:

In the quadrant III both the sine and cosine get negative value.

Use the identity:

  • sin²θ + cos²θ = 1

And consider negative value as mentioned above:

  • sinθ = - √(1 - cos²θ)
  • sinθ = - √(1 - (-13/15)²)
  • sinθ = - √(1 - 169/225)
  • sinθ = - √(56/225)
  • sinθ = - 2√14/15
User Chisophugis
by
2.4k points
16 votes
16 votes

Answer:

Solution given

Cos
\displaystyle \theta_(1)=(13)/(15)

consider Pythagorean theorem


\bold{Sin²\theta+Cos²\theta=1}

Subtracting
Cos²\thetaboth side


\displaystyle Sin²\theta=1-Cos²\theta

doing square root on both side we get


Sin\theta=√(1-Cos²\theta)

Similarly


Sin\theta_(1)=\sqrt{1-Cos²\theta_(1)}

Substituting value of
Cos\theta_(1)

we get


Sin\theta_(1)=\sqrt{1-((-13)/(15))²}

Solving numerical


Sin\theta_(1)=\sqrt{1-((169)/(225))}


Sin\theta_(1)=\sqrt{(56)/(225)}


Sin\theta_(1)=(√(56))/(√(225))


Sin\theta_(1)=(√(2*2*14))/(√(15*15))


Sin\theta_(1)=(2√(14))/(15)

Since

In III quadrant sin angle is negative


\bold{Sin\theta_(1)=-(2√(14))/(15)}

User Marek Musielak
by
2.5k points