270,984 views
16 votes
16 votes
Help with 27 please. thanks​

Help with 27 please. thanks​-example-1
User Karan Owalekar
by
2.5k points

1 Answer

25 votes
25 votes

Answer:

See Below.

Explanation:

We are given the function:


\displaystyle y=√(\sin x)

And we want to show that:


\displaystyle 4y^3(d^2y)/(dx^2)+y^4+1=0

Find the first derivative of y using the chain rule:


\displaystyle (dy)/(dx) = (1)/(2√(\sin x))\cdot \cos x = (\cos x)/(2√(\sin x))

And find the second derivative using the quotient and chain rules:


\displaystyle \begin{aligned} (d^2y)/(dx^2) &= (1)/(2)\left(((\cos x)'(√(\sin x))-(\cos x)(√(\sin x))')/((√(\sin x))^2)\right) \\ \\ &=(1)/(2)\left((-\sin x√(\sin x) - \left(\cos x\right) \left ((\cos x)/(2√(\sin x))\right))/(\sin x)\right) \\ \\ & = (1)/(2)\left(( -\sin x(2\sin x) -\cos x(\cos x) )/(\sin x \left(2√(\sin x)\right) )\right) \\ \\ &= -(1)/(2) \left(\frac{2\sin^2 x + \cos^2 x}{2\sin^{{}^(3)\!/\! {}_(2)}x}\right)\end{aligned}

Find y³:


\displaystyle y^3 = \left((\sin x)^{{}^(1)\!/\!{}_(2)}\right) ^3= \sin^{{}^(3)\! / \! {}_(2) }x

And find y⁴:


\displaystyle y^4 = \left((\sin x)^{{}^(1)\!/\!{}_(2)}\right)^4 = \sin^2 x

Substitute:


\displaystyle 4\left( \sin^{{}^(3)\! / \! {}_(2) }x\right)\left(-(1)/(2)\left(\frac{2\sin ^2x + \cos ^2 x}{2\sin^{{}^(3)\!/ \! {}_(2)}x}\right)\right)+\left(\sin ^2 x\right) + 1= 0

Simplify:


-\left(2\sin^2 x + \cos^2 x\right) + \sin ^2 x + 1=0

Distribute:


-2\sin ^2 x - \cos^2 x + \sin ^2 x + 1=0

Simplify:


-\sin ^2 x - \cos^2 x + 1= 0

Factor:


-(\sin ^2 x + \cos^2 x ) + 1=0

Pythagorean Identity:


-(1)+1=0\stackrel{\checkmark}{=}0

Q.E.D.

User Boaz Yaniv
by
3.6k points