92.8k views
7 votes
What is the length of the curve with parametric equations x = t - cos(t), y = 1 - sin(t) from t = 0 to t = π? (5 points)

A) 8
B) 4 times the square root of 2
C) 4
D) 8 times the square root of 2

1 Answer

8 votes

Answer:

B) 4√2

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Parametric Differentiation

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Arc Length Formula [Parametric]:
\displaystyle AL = \int\limits^b_a {√([x'(t)]^2 + [y(t)]^2)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle \left \{ {{x = t - cos(t)} \atop {y = 1 - sin(t)}} \right.

Interval [0, π]

Step 2: Find Arc Length

  1. [Parametrics] Differentiate [Basic Power Rule, Trig Differentiation]:
    \displaystyle \left \{ {{x' = 1 + sin(t)} \atop {y' = -cos(t)}} \right.
  2. Substitute in variables [Arc Length Formula - Parametric]:
    \displaystyle AL = \int\limits^(\pi)_0 {√([1 + sin(t)]^2 + [-cos(t)]^2)} \, dx
  3. [Integrand] Simplify:
    \displaystyle AL = \int\limits^(\pi)_0 {√(2[sin(x) + 1]) \, dx
  4. [Integral] Evaluate:
    \displaystyle AL = \int\limits^(\pi)_0 {√(2[sin(x) + 1]) \, dx = 4√(2)

Topic: AP Calculus BC (Calculus I + II)

Unit: Parametric Integration

Book: College Calculus 10e

User Vijay Bhandari
by
4.2k points