Answer: Below is the complete question
A spherical piece of candy is suspended in flowing water. The candy has a density of 1950 kg/m3 and has a 1.0 cm diameter. The water velocity is 1.0 m/s, the water density is assumed to be 1000.0 kg/m3, and the water viscosity is 1.0x10-3 kg/m/s. The diffusion coefficient of the candy solute in water is 2.0x10-9 m2/s, and the solubility of the candy solute in water is 2.0 kg/m3. Calculate the mass transfer coefficient (m/s)
answer:
mass transfer coefficient = 9.56 * 10^-5 m/s
Step-by-step explanation:
Candy density = 1950 kg/m^3
Candy diameter = 1 cm
Velocity of water = 1 m/s
water density = 1000 kg/m^3
Viscosity of water = 1 * 10^-3 kg/m/s
diffusion coefficient of candy in water = 2 * 10^-9 m^2/s
solubility of candy = 2 kg/m^3
Determine the mass transfer coefficient ( m/s )
( Sh) mass transfer coefficient ( flow across sphere ) = 2 + 0.6Re^1/2 * SC^1/3
where : Re = vdp / μ , Sh = KLd / Deff
attached below is the remaining solution .
mass transfer coefficient = 9.56 * 10^-5 m/s