Answer:
the required angle is 0.0834879⁰
Step-by-step explanation:
Given the data in the question;
slit separation; d = 1.75 mm = 1.75 × 10⁻³ m
wavelength λ₁ = 425 nm = 425 × 10⁻⁹ m
wavelength λ₂ 510 nm = 510 × 10⁻⁹ m
Now, we know that, the angle at which a particular bright fringe occurs on either side of the central bright fringe will be;
tanθ =
/ D = mλ/d
since they both coincides;
tanθ₁ = tanθ₂
m₁λ₁/d = m₂λ₂/d
multiply both sides by d
so,
m₁/m₂ = λ₂/λ₁
we substitute
m₁/m₂ = 510 nm / 425 nm
m₁/m₂ = 510 nm / 425 nm
divide through by 85
m₁/m₂ = 6 / 5
hence m₁ and m₂ are 6 and 5
so, from the previous formula
tanθ₂ = m₂λ₂/d
we substitute
tanθ₂ = [ 5 × ( 510 × 10⁻⁹ m ) ] / 1.75 × 10⁻³ m
tanθ₂ = 255 × 10⁻⁸ m / 1.75 × 10⁻³ m
tanθ₂ = 255 × 10⁻⁸ m / 1.75 × 10⁻³ m
tanθ₂ = 0.00145714
θ₂ = tan⁻¹( 0.00145714 )
θ₂ = 0.0834879⁰
Therefore, the required angle is 0.0834879⁰