Answer:
See bolded below.
Explanation:
As you said, you only need help with no. 2:
a) Check the attachments for the lines
b) The equations are, respectively:
y = -4x + 1 [intersects parabola at 1 point]
Check:
![\begin{bmatrix}y=\left(x-2\right)^2-3\\ y=-4x+1\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/fvkzhfg2d6bvgxxmg7hpyt3erf5sr1yj6a.png)
![\begin{bmatrix}-4x+1=\left(x-2\right)^2-3\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/znxg83kuzsrvn5m8v17yy8uswpxkgukbp2.png)
![\begin{bmatrix}-4x+1=x^2-4x+1\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/xnrk0twlr4v0c3bcz7sl1eiwq6u8vn01e8.png)
![x^2=0, x = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/elwl7l5t92gm8qo7i26pmg508vypf7mw7n.png)
![y=-4\cdot \:0+1 = 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/c1h8jdrkig6w80xkghio1i25ju3tk16mnc.png)
![y=1,\:x=0](https://img.qammunity.org/2022/formulas/mathematics/high-school/64p7vrr3t9xaqjdu35en77360zkg9y62a6.png)
The point of intersection would be (0, 1)
y = -4x + 3 [intersects parabola at 2 points]
Check:
![\begin{bmatrix}y=\left(x-2\right)^2-3\\ y=-4x+3\end{bmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/dqemdq3troiul0xh0ew8qm4dlq7ge1gg9k.png)
Subtract the 2 equations,
![y=\left(x-2\right)^2-3\\-\\\underline{y=-4x+3}\\y-y=\left(x-2\right)^2-3-\left(-4x+3\right),\\0=x^2-2\\x = √(2), x = - √(2) \\\\\mathrm{Plug\:the\:solutions\:}x=√(2),\:x=-√(2)\mathrm{\:into\:}y=\left(x-2\right)^2-3](https://img.qammunity.org/2022/formulas/mathematics/high-school/i25lvh5its6h0plnvci1yd4wogbdy03dvt.png)
![\begin{pmatrix}x=√(2),\:&y=3-4√(2)\\ x=-√(2),\:&y=3+4√(2)\end{pmatrix}](https://img.qammunity.org/2022/formulas/mathematics/high-school/okerzcy68kwveb5n8y95zkbozpo3mteteh.png)
Therefore the points of intersection are (√2, 3-4√2) and (-√2, 3+4√2) respectively
And finally we have the equation y = - 4x. It doesn't intersect the parabola.
c) The y-intercepts of such graphs are all less than or equal to 0.