Answer:
The coordinate of b = (2, 2)
Explanation:
The details of the quadrilateral abcd are;
The quadrilateral is symmetric about the y-axis (the line x = 0)
The coordinates of the vertices are; a(-2, 2), c(2, 1)
The location of the vertex, b = The first quadrant
We have;
The line
is perpendicular to the line
Let (x, y) represent the coordinate of the vertex b, we have;
(y - 2)/(x - (-2)) = (y - 2)/(x + 2) = -1/(y - 1)/(x - 2) = - (x - 2)/(y - 1)
(y - 2)·(y - 1) = -(x + 2)·(x - 2)
y² + x² - 3·y - 2 = 0...(1)
y² + x² = 3·y + 2
Also we have;
(y - 2)² + (x - 1)² + (y - 2)² + (x - (-2))² = (2 - 1)² + (2 - (-2))² = 17
Therefore;
2·y² + 2·x² - 8·y + 2·x + 13 = 17
2·(3·y + 2) - 8·y + 2·x + 13 = 17
Using an online tool, we have;
x = y
From equation (1), we have;
2·y² - 3·y - 2 = 0
∴ y = 2, or y = -1/2
Where y = 2, we have;
x = y = 2
Therefore, the point b = (2, 2).