Answer:
The midsegment is 58 units long.
Explanation:
Midsegment Theorem:
It states that the length of the midsegment is half the length of the parallel side.
In this question:
Midsegment: 2x + 8
Parallel side: 5x - 9
Parallel side is double the midsegment. So, we use this to find x:
![5x - 9 = 2(2x + 8)](https://img.qammunity.org/2022/formulas/mathematics/college/7wccqf1efsy66jrn5nd5lte2i0vx9nzbkz.png)
![5x - 9 = 4x + 16](https://img.qammunity.org/2022/formulas/mathematics/college/k60qcfxaba4jt5mfub5k8yl45wmu04453z.png)
![x = 25](https://img.qammunity.org/2022/formulas/mathematics/college/eunee1mzz3xbb1a9dvbzh3kiz7so67nl3e.png)
Midsegment:
![2x + 8 = 2(25) + 8 = 50 + 8 = 58](https://img.qammunity.org/2022/formulas/mathematics/college/shc5soi49tzapgkygzf744ybf38l41wm43.png)
The midsegment is 58 units long.