10,198 views
37 votes
37 votes
Let X be a random variable with density function f(x) = 2e^−2x
Calculate P( X≤ 0.5| X≤ 1)

User Nagabhushan S N
by
2.9k points

1 Answer

8 votes
8 votes

By definition of conditional probability,

P(X ≤ 0.5 | X ≤ 1) = P((X ≤ 0.5) and (X ≤ 1)) / P(X ≤ 1)

but if X ≤ 0.5, then it's automatic that X ≤ 1, so

P(X ≤ 0.5 | X ≤ 1) = P(X ≤ 0.5) / P(X ≤ 1)

Given the PDF of X,


f_X(x) = \begin{cases}2e^(-2x)&\text{if }x\ge0\\0&\text{otherwise}\end{cases}

the CDF would be


P(X\le x) = F_X(x) = \displaystyle\int_(-\infty)^x f_X(t)\,\mathrm dt


F_X(x) = \begin{cases}0&amp;\text{if }x<0\\1-e^(-2x)&amp;\text{if }x\ge0\end{cases}

So we have

P(X ≤ 0.5 | X ≤ 1) = (1 - exp(-2 × 0.5)) / (1 - exp(-2 × 1))

… = (1 - exp(-1)) / (1 - exp(-2))

… = (1 - 1/e) / (1 - 1/e ²)

… = (e ² - e) / (e ² - 1)

… = e / (e + 1) ≈ 0.7312

User Sreejesh
by
2.7k points