232,561 views
8 votes
8 votes
Given the following coordinates complete the glide reflection transformation.

A(−1,−3)


B(−4,−1)


C(−6,−4)


Transformation: Reflection over the x-axis and a translation of shifting right 10 units.

User David Lobron
by
3.0k points

1 Answer

22 votes
22 votes

Given:

The vertices of a triangle are A(−1,−3) , B(−4,−1) and C(−6,−4).

Transformation: Reflection over the x-axis and a translation of shifting right 10 units.

To find:

The image after glide reflection transformation.

Solution:

The vertices of a triangle are A(−1,−3) , B(−4,−1) and C(−6,−4).

If a figure is reflected over the x-axis, then


(x,y)\to (x,-y)

Using this, we get


A(-1,-3)\to A'(-1,3)


B(-4,-1)\to B'(-4,1)


C(-6,-4)\to C'(-6,4)

If a figure is shifting 10 units right, then


(x,y)\to (x+10,y)

Using this we get


A'(-1,3)\to A''(-1+10,3)


A'(-1,3)\to A''(9,3)

Similarly,


B'(-4,1)\to B''(-4+10,1)


B'-4,1)\to B''(6,1)

And,


C'(-6,-4)\to C''(-6+10,4)


C'(-6,-4)\to C''(4,4)

Therefore, the vertices of the image are A''(9,3), B''(6,1) and C''(4,4).

User Michael Borgwardt
by
2.9k points