Answer:
Area of ABCD = 45.1 cm²
Explanation:
From the figure attached,
Area of ABCD = Area of ΔBCD + Area of ΔABD
Area of ΔABD =
sin(55°) =
sin(55°) =
AB = 10sin(55°)
AB = 8.19 cm
cos(55°) =
=
AD = 10cos(55°)
AD = 5.74cm
Area of ΔABD =
= 23.51 cm²
Area of ΔBCD =
=
tan(38°) =
BE =
Similarly, DE =
Since, BE + DE = 10 cm
CE(1.28 + 1.04) = 10
CE(2.32) = 10
CE = 4.31 cm
Area of ΔBCD =
= 21.55 cm²
Area of ABCD = Area of ΔBCD + Area of ΔABD
= 21.55 + 23.51
= 45.06
≈ 45.1 cm²