228k views
18 votes
Work out area of ABCD

Work out area of ABCD-example-1

1 Answer

3 votes

Answer:

Area of ABCD = 45.1 cm²

Explanation:

From the figure attached,

Area of ABCD = Area of ΔBCD + Area of ΔABD

Area of ΔABD =
(1)/(2)(AB)(BD)

sin(55°) =
\frac{\text{Opposite side}}{\text{Hypotenuse}}

sin(55°) =
(AB)/(BD)

AB = 10sin(55°)

AB = 8.19 cm

cos(55°) =
\frac{\text{Adjacent side}}{\text{Hypotenuse}}

=
(AD)/(BD)

AD = 10cos(55°)

AD = 5.74cm

Area of ΔABD =
(1)/(2)(8.19)(5.74)

= 23.51 cm²

Area of ΔBCD =
(1)/(2)(\text{Base})(\text{Height})

=
(1)/(2)(BD)(CE)

tan(38°) =
(CE)/(BE)

BE =
\frac{CE}{\text{tan}(38)}

Similarly, DE =
\frac{CE}{\text{tan}(44)}

Since, BE + DE = 10 cm


\frac{CE}{\text{tan}(38)}+\frac{CE}{\text{tan}(44)}=10

CE(1.28 + 1.04) = 10

CE(2.32) = 10

CE = 4.31 cm

Area of ΔBCD =
(1)/(2)(10)(4.31)

= 21.55 cm²

Area of ABCD = Area of ΔBCD + Area of ΔABD

= 21.55 + 23.51

= 45.06

45.1 cm²

Work out area of ABCD-example-1
User Jbudreau
by
4.9k points