(C) You're given a probability mass function,
The mean is
The variance is
The standard deviation is simply the square root of the variance:
(D) I'm not entirely sure what is being asked here, so I'm kinda guessing at the meaning. I think the question is saying there is a large set of 5000 test scores that are normally distributed with mean µ = 86 and standard deviation σ = 10.
Let X be the random variable representing these test scores. Then
(D.A)
where Z follows the standard normal distribution with mean 0 and variance 1.
To find the remaining probability, you can use the empirical rule (68/95/99.7) which says
• approximately 68% of a normal distribution lies within 1 standard deviation of the mean; in other words,
• approximately 95% of the distribution lies within 2 standard deviations;
The normal distribution is also symmetric about its mean. Taking these facts together, we find
So roughly 13.5% of all test scores will fall between 96 and 106, and 13.5% of 5000 is 675. (The actual probability is closer 0.135905, and the projected test score count is closer to 679.)
(D.B) Any 50% of the distribution is still 50% of the distribution, so half of all the test scores would fall in this range. There would be 2500 test scores in that group.
(E) No choices given here...