Answer:
Part A)
![\displaystyle (dy)/(dx)=x^2+2x-7](https://img.qammunity.org/2022/formulas/mathematics/college/6646peze6notpv6y2b5j1tkidlslqefi60.png)
Part B)
![\displaystyle \Big(-4,(53)/(3)\Big)\text{ and } \Big(2, -(37)/(3)\Big)](https://img.qammunity.org/2022/formulas/mathematics/college/87973y9jymi6f9zzcox5vgqgm7rhr4mjs2.png)
Explanation:
We are given the function:
![\displaystyle y=(x^3)/(3)+x^2-7x-5](https://img.qammunity.org/2022/formulas/mathematics/college/z2at63plwlam80a650ajmvjzar7aeywj0a.png)
Part A)
To find dy/dx, differentiate both sides with respect to x:
![\displaystyle (dy)/(dx)=(d)/(dx)\Big[(x^3)/(3)+x^2-7x-5\Big]](https://img.qammunity.org/2022/formulas/mathematics/college/klfjn1shnhq315zwh5huug3n5y7x4sygw1.png)
Differentiate:
![\displaystyle (dy)/(dx)=x^2+2x-7](https://img.qammunity.org/2022/formulas/mathematics/college/6646peze6notpv6y2b5j1tkidlslqefi60.png)
Part B)
We want the points on the curve where the gradient is parallel to y = x.
The equation y = x has a constant gradient of 1.
Therefore, we can set dy/dx = 1 and solve for x:
![1=x^2+2x-7](https://img.qammunity.org/2022/formulas/mathematics/college/jj0c1r8bd30e0wp5vdtgn14enkmloxqeqe.png)
Rewrite:
![x^2+2x-8=0](https://img.qammunity.org/2022/formulas/mathematics/college/bgcrmvh3llaaw71xxpn241aznn49v0g9t0.png)
Factor:
![(x+4)(x-2)=0](https://img.qammunity.org/2022/formulas/mathematics/college/vaa0anfy5mm9iah8wsudeu9pkqlnafbl4l.png)
Thus:
![x=-4\text{ and } x=2](https://img.qammunity.org/2022/formulas/mathematics/college/on7nb9jpa4i3xwd1i5rxib6iojgalzzg6q.png)
And substituting them back for the original equation, we acquire:
![\displaystyle y(-4)=((-4)^3)/(3)+(-4)^2-7(-4)-5=(53)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/t9g0cfnfworek15gfb08wrdw1xgm20yl5x.png)
And:
![\displaystyle y(2)=((2)^3)/(3)+(2)^2-7(2)-5=-(37)/(3)](https://img.qammunity.org/2022/formulas/mathematics/college/o7bovxdfp3irowpfvbvqals9zg0y9saii8.png)
Our points are:
![\displaystyle \Big(-4,(53)/(3)\Big)\text{ and } \Big(2, -(37)/(3)\Big)](https://img.qammunity.org/2022/formulas/mathematics/college/87973y9jymi6f9zzcox5vgqgm7rhr4mjs2.png)