378,987 views
33 votes
33 votes
A car is driving towards an intersection when the light turns red. The brakes apply a constant force of 1,398 newtons to bring the car to a complete stop in 25 meters. If the weight of the car is 4,729 newtons, how fast was the car going initially

User Mmonem
by
2.9k points

1 Answer

7 votes
7 votes

Answer:

the initial velocity of the car is 12.04 m/s

Step-by-step explanation:

Given;

force applied by the break, f = 1,398 N

distance moved by the car before stopping, d = 25 m

weight of the car, W = 4,729 N

The mass of the car is calculated as;

W = mg

m = W/g

m = (4,729) / (9.81)

m = 482.06 kg

The deceleration of the car when the force was applied;

-F = ma

a = -F/m

a = -1,398 / 482.06

a = -2.9 m/s²

The initial velocity of the car is calculated as;

v² = u² + 2ad

where;

v is the final velocity of the car at the point it stops = 0

u is the initial velocity of the car before the break was applied

0 = u² + 2(-a)d

0 = u² - 2ad

u² = 2ad

u = √2ad

u = √(2 x 2.9 x 25)

u =√(145)

u = 12.04 m/s

Therefore, the initial velocity of the car is 12.04 m/s

User QRTPCR
by
2.9k points