105k views
8 votes
Use vertex (h, k) and a table of values g(x) = 2 * (x - 2) ^ 2 + 5

Use vertex (h, k) and a table of values g(x) = 2 * (x - 2) ^ 2 + 5-example-1

2 Answers

8 votes

Answer:

Explanation:

Comparing the given g(x) = 2(x - 2) ^ 2 + 5 to h(x) = a(x - h)^2 + k, we see that h = 2, k = 5, a = 2. Thus, the vertex is at (2,5). Several sample points on this graph are:

x y = g(x) (x, y)

2 5 (2, 5)

0 2(0-2)^2)+ 5 (0, 13)

1 2(1-2)^2 + 5 (1, 7)

3 2(3-2)^2 + 5 (3, 7)

and so on. Plot these are several more points and then draw a smooth curve through them. The graph will be a parabola with vertex (2, 5) that opens up.

User Mohammad Rajabloo
by
8.3k points
9 votes

Explanation:

Since the equation is in vertex form: a(x - h)² + k, we immediately know that the vertex is at (2, 5).

x | y

0 | 13

1 | 7

2 | 5

3 | 7

4 | 13

Use vertex (h, k) and a table of values g(x) = 2 * (x - 2) ^ 2 + 5-example-1
User Conrad Irwin
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories