193,784 views
18 votes
18 votes
Prove that.

lim Vx (Vx+ 1 - Vx) = 1/2 X>00 ​

Prove that. lim Vx (Vx+ 1 - Vx) = 1/2 X>00 ​-example-1
User Vadchen
by
2.6k points

2 Answers

17 votes
17 votes

Answer:

Hello,

Explanation:


\displaystyle \lim_(x \to \infty) √(x)*(√(x+1)-√(x) ) \\\\\\= \lim_(x \to \infty)( √(x)*(√(x+1)-√(x) )*(√(x+1)+√(x) ))/(√(x+1) +√(x) ) \\\\= \lim_(x \to \infty) (√(x) *1)/(√(x+1) +√(x) ) \\\\\\= \lim_(x \to \infty) \frac{1} {\sqrt {\frac {x+1} {x} }+\sqrt{(x)/(x) } } \\\\\\=\frac{1} {\sqrt {1}+√(1) } \\\\\\=\frac{1} {2} \\

User Nakamoto
by
3.0k points
23 votes
23 votes

Answer:

The idea is to transform the expression by multiplying
(√(x + 1) - √(x)) with its conjugate,
(√(x + 1) + √(x)).

Explanation:

For any real number
a and
b,
(a + b)\, (a - b) = a^(2) - b^(2).

The factor
(√(x + 1) - √(x)) is irrational. However, when multiplied with its square root conjugate
(√(x + 1) + √(x)), the product would become rational:


\begin{aligned} & (√(x + 1) - √(x)) \, (√(x + 1) + √(x)) \\ &= (√(x + 1))^(2) -(√(x))^(2) \\ &= (x + 1) - (x) = 1\end{aligned}.

The idea is to multiply
√(x)\, (√(x + 1) - √(x)) by
\displaystyle (√(x + 1) + √(x))/(√(x + 1) + √(x)) so as to make it easier to take the limit.

Since
\displaystyle (√(x + 1) + √(x))/(√(x + 1) + √(x)) = 1, multiplying the expression by this fraction would not change the value of the original expression.


\begin{aligned} & \lim\limits_(x \to \infty) √(x) \, (√(x + 1) - √(x)) \\ &= \lim\limits_(x \to \infty) \left[√(x) \, (√(x + 1) - √(x))\cdot (√(x + 1) + √(x))/(√(x + 1) + √(x))\right] \\ &= \lim\limits_(x \to \infty) (√(x)\, ((x + 1) - x))/(√(x + 1) + √(x)) \\ &= \lim\limits_(x \to \infty) (√(x))/(√(x + 1)+ √(x))\end{aligned}.

The order of
x in both the numerator and the denominator are now both
(1/2). Hence, dividing both the numerator and the denominator by
x^((1/2)) (same as
√(x)) would ensure that all but the constant terms would approach
0 under this limit:


\begin{aligned} & \lim\limits_(x \to \infty) √(x) \, (√(x + 1) - √(x)) \\ &= \cdots\\ &= \lim\limits_(x \to \infty) (√(x))/(√(x + 1)+ √(x)) \\ &= \lim\limits_(x \to \infty) (√(x) / √(x))/((√(x + 1) / √(x)) + (√(x) / √(x))) \\ &= \lim\limits_(x \to \infty)(1)/(√((x / x) + (1 / x)) + 1) \\ &= \lim\limits_(x \to \infty) (1)/(√(1 + (1/x)) + 1)\end{aligned}.

By continuity:


\begin{aligned} & \lim\limits_(x \to \infty) √(x) \, (√(x + 1) - √(x)) \\ &= \cdots\\ &= \lim\limits_(x \to \infty) (√(x))/(√(x + 1)+ √(x)) \\ &= \cdots \\ &= \lim\limits_(x \to \infty) (1)/(√(1 + (1/x)) + 1) \\ &= \frac{1}{\sqrt{1 + \lim\limits_(x \to \infty)(1/x)} + 1} \\ &= (1)/(1 + 1) \\ &= (1)/(2)\end{aligned}.

User Ericponto
by
3.2k points