223k views
12 votes
Find the limit:
lim e−9x sin x
x→0

User Codded
by
3.1k points

1 Answer

8 votes

Answer:


\displaystyle \lim_(x \to 0) e^\big{-9x} \sin x = 0

General Formulas and Concepts:

Pre-Calculus

  • Unit Circle

Calculus

Limits

Limit Rule [Variable Direct Substitution]:
\displaystyle \lim_(x \to c) x = c

Explanation:

Step 1: Define

Identify


\displaystyle \lim_(x \to 0) e^\big{-9x} \sin x

Step 2: Evaluate

  1. Limit Rule [Variable Direct Substitution]:
    \displaystyle \lim_(x \to 0) e^\big{-9x} \sin x = e^\big{-9(0)} \sin(0)
  2. Simplify:
    \displaystyle \lim_(x \to 0) e^\big{-9x} \sin x = 0

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

User Kevin Young
by
3.1k points