144,812 views
20 votes
20 votes
Hi, could someone help me differentiate Q6 b with the use if ln​

Hi, could someone help me differentiate Q6 b with the use if ln​-example-1
User Luke Merrett
by
3.3k points

1 Answer

21 votes
21 votes

Answer:


\displaystyle (dy)/(dx) = (-(2x - 3)(6x - 43))/((3x + 4)^4)

General Formulas and Concepts:

Pre-Algebra

  • Equality Properties

Algebra II

  • Natural logarithms ln and Euler's number e
  • Logarithmic Property [Dividing]:
    \displaystyle log((a)/(b)) = log(a) - log(b)
  • Logarithmic Property [Exponential]:
    \displaystyle log(a^b) = b \cdot log(a)

Calculus

Differentiation

  • Derivatives
  • Derivative Notation
  • Implicit Differentiation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:
\displaystyle (d)/(dx) [(f(x))/(g(x)) ]=(g(x)f'(x)-g'(x)f(x))/(g^2(x))

Derivative Rule [Chain Rule]:
\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)

Explanation:

Step 1: Define

Identify


\displaystyle y = ((2x - 3)^2)/((3x + 4)^3)

Step 2: Rewrite

  1. [Equality Property] ln both sides:
    \displaystyle lny = ln \bigg[ ((2x - 3)^2)/((3x + 4)^3) \bigg]
  2. Expand [Logarithmic Property - Dividing]:
    \displaystyle lny = ln(2x - 3)^2 - ln(3x + 4)^3
  3. Simplify [Logarithmic Property - Exponential]:
    \displaystyle lny = 2ln(2x - 3) - 3ln(3x + 4)

Step 3: Differentiate

  1. Implicit Differentiation:
    \displaystyle (dy)/(dx)[lny] = (dy)/(dx) \bigg[ 2ln(2x - 3) - 3ln(3x + 4) \bigg]
  2. Logarithmic Differentiation [Derivative Rule - Chain Rule]:
    \displaystyle (1)/(y) \ (dy)/(dx) = 2 \bigg( (1)/(2x - 3) \bigg)(dy)/(dx)[2x - 3] - 3 \bigg( (1)/(3x + 4) \bigg) (dy)/(dx)[3x + 4]
  3. Basic Power Rule:
    \displaystyle (1)/(y) \ (dy)/(dx) = 4 \bigg( (1)/(2x - 3) \bigg) - 9 \bigg( (1)/(3x + 4) \bigg)
  4. Simplify:
    \displaystyle (1)/(y) \ (dy)/(dx) = (4)/(2x - 3) - (9)/(3x + 4)
  5. Isolate
    \displaystyle (dy)/(dx):
    \displaystyle (dy)/(dx) = y \bigg( (4)/(2x - 3) - (9)/(3x + 4) \bigg)
  6. Substitute in y [Derivative]:
    \displaystyle (dy)/(dx) = ((2x - 3)^2)/((3x + 4)^3) \bigg( (4)/(2x - 3) - (9)/(3x + 4) \bigg)
  7. Simplify:
    \displaystyle (dy)/(dx) = ((2x - 3)^2)/((3x + 4)^3) \bigg[ (4(3x + 4) - 9(2x - 3))/((2x - 3)(3x +4)) \bigg]
  8. Simplify:
    \displaystyle (dy)/(dx) = (-(2x - 3)(6x - 43))/((3x + 4)^4)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

User Raduken
by
3.0k points