262,510 views
19 votes
19 votes
Verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval I of definition for each solution.

d^2y/ dx^2 − 6 dy/dx + 9y = 0; y = c1e3x + c2xe3x When y = c1e3x + c2xe3x,

User Moustafa Sallam
by
3.0k points

1 Answer

18 votes
18 votes

y'' - 6y' + 9y = 0

If y = C₁ exp(3x) + C₂ x exp(3x), then

y' = 3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x))

y'' = 9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x))

Substituting these into the DE gives

(9C₁ exp(3x) + C₂ (6 exp(3x) + 9x exp(3x)))

… … … - 6 (3C₁ exp(3x) + C₂ (exp(3x) + 3x exp(3x)))

… … … + 9 (C₁ exp(3x) + C₂ x exp(3x))

= 9C₁ exp(3x) + 6C₂ exp(3x) + 9C₂ x exp(3x))

… … … - 18C₁ exp(3x) - 6C₂ (exp(3x) - 18x exp(3x))

… … … + 9C₁ exp(3x) + 9C₂ x exp(3x)

= 0

so the provided solution does satisfy the DE.

User Ania Warzecha
by
3.0k points