Answer:
∆H0 = -222kJ/mol
Step-by-step explanation:
Using Hess's law, we can find the ΔH of a reaction from the sum of another related reactions as follows:
Using the reactions:
(1) C(s) + O2(g) → CO2(g) ∆H0= -394 KJ/mol
(2) CO(s) + 1/2 O2(g) → CO2(g) ∆H0= -283 KJ/mol
Twice (1):
2C(s) + 2O2(g) → 2CO2(g) ∆H0= 2*-394 KJ/mol = -788kJ/mol
The inverse reaction of (2):
-(2) CO2(g) → CO(g) + 1/2 O2(g) ∆H0= 283 KJ/mol
Twice this reaction:
2*-(2) 2CO2(g) → 2CO(s) + O2(g) ∆H0= 2*283 KJ/mol= 566kJ/mol
Now, the sum of 2*(1) - 2*(2) produce:
2C(s) + 2O2(g) + 2CO2(g)→ 2CO2(g) + 2CO(g) + O2(g) ∆H0= -788kJ/mol + 566kJ/mol
Subtracting the molecules that ar in both sides of the reaction:
2C(s) + O2(g) → 2CO(g) ∆H0 = -222kJ/mol