33.7k views
16 votes
Integral 3t+ 1 / (t + 1)^2​

User Amonakov
by
4.3k points

1 Answer

12 votes

Answer:


3ln|t+1|+(2)/(t+1) +C

Step-by-step explanation:

We'll be using u-substitution for this problem.

Let


u=t+1\\du=dt

Substitute


\int\limits {(3u-2)/(u^2)} \, du

Split the fraction


\int\limits {(3u)/(u^2) } \, du -\int\limits {(2)/(u^2) } \, du

Move the constants out


3\int\limits {(u)/(u^2)du -2\int\limits {u^(-2)} \, du

Simplify


3\int\limits {(1)/(u)du -2\int\limits {u^(-2)} \, du

Integrate


3ln|u|+(2)/(u) +C

Substitute


3ln|t+1|+(2)/(t+1) +C

User WindowsMaker
by
4.0k points