227k views
0 votes
Let y = 5e5z

A. Find the differential dy
25e53
dy
B. Use part A. to find dy when x = - 3 and dir = 0.4.
Round your answer to 2 decimal(s).
dy =
Submit Question

Let y = 5e5z A. Find the differential dy 25e53 dy B. Use part A. to find dy when x-example-1
User Nren
by
4.2k points

1 Answer

2 votes

Answer:


\displaystyle dy = 25e^(5x)dx\\dy = 3.27 \cdot 10^7

General Formulas and Concepts:

Math

  • Rounding
  • Euler's Number e - 2.71828

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Calculus

Derivatives

Derivative Notation

Differentials

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

eˣ Derivative:
\displaystyle (dy)/(dx)[e^u] = u'e^u

Explanation:

Part A

Step 1: Define


\displaystyle y = 5e^(5x)

Step 2: Differentiate

  1. [Function] eˣ Derivative:
    \displaystyle (dy)/(dx) = (dy)/(dx)[5x] \cdot 5e^(5x)
  2. [Derivative] Basic Power Rule:
    \displaystyle (dy)/(dx) = 5x^(1 - 1) \cdot 5e^(5x)
  3. [Derivative] Simplify:
    \displaystyle (dy)/(dx) = 5 \cdot 5e^(5x)
  4. [Derivative] Multiply:
    \displaystyle (dy)/(dx) = 25e^(5x)
  5. [Derivative] [Multiplication Property of Equality] Isolate dy:
    \displaystyle dy = 25e^(5x)dx

Part B

Step 1: Define

[Differential]
\displaystyle dy = 25e^(5x)dx

[Given] x = 3, dx = 0.4

Step 2: Evaluate

  1. Substitute in variables [Differential]:
    \displaystyle dy = 25e^(5(3))(0.4)
  2. [Differential] [Exponents] Multiply:
    \displaystyle dy = 25e^(15)(0.4)
  3. [Differential] Evaluate exponents:
    \displaystyle dy = 25(3.26902 \cdot 10^6)(0.4)
  4. [Differential] Multiply:
    \displaystyle dy = (8.17254 \cdot 10^7)(0.4)
  5. [Differential] Multiply:
    \displaystyle dy = 3.26902 \cdot 10^7
  6. [Differential] Round:
    \displaystyle dy = 3.27 \cdot 10^7

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Differentials

Book: College Calculus 10e

User Thinh
by
4.7k points