Answer:
ABCD is a parallelogram. The diagonals AC and BD intersect at O. If AB = 6 cm, = AC = 11 cm and BO =3.5 cm what is the length of AD?
The diagonals AC and BD bisect each other, therefore AO = OC = 5.5 cm.
The area of triangle AOB = COD = [s(s-a)(s-b)(s-c)]^0.5
Here a = 6, b = 5.5, c = 3.5, so 2s = 15 or s = 7.5. So
[s(s-a)(s-b)(s-c)]^0.5 = [7.5(7.5–6)(7.5–5.5)(7.5–3.5)]^0.5
= [7.5*1.5*2*4]^0.5
= 90^0.5 sq cm
Area of triangle ADC = 2 x area of triangle AOB = 2*90^0.5 sq cm, or
2*90^0.5 = [(s1(s1-p)(s1-q)(s1-r)]^2, squaring both sides we get
4*90 = [s1(s1-p)(s1-q)(s1-r)]
360 = s1(s1–11)(s1–6)(s1-AD) … (1)
2s1 = AD + 11 + 6 = AD + 17, or
s1 = 8.5 + 0.5AD … (2). Put the value of s1 from (2) in (1) to get
360 = (8.5 + 0.5AD)(8.5 + 0.5AD-11)(8.5 + 0.5AD-6)(8.5 + 0.5AD-AD)
360 = (8.5 + 0.5AD)(0.5AD-2.5)(0.5AD+2.5)(8.5 - 0.5AD)
360 = (8.5^2 - 0.5AD^2)(0.25AD^2–6.25)
= - (8.5^2 - 0.5AD^2)(6.25 - 0.25AD^2)
= - (72.25 -0.5AD^2)(6.25 - 0.25AD^2)
360 = - [451.5625 -18.0625AD^2 - 3.125AD^2 + 0.125AD^3], or
-360 = 451.5625 -18.0625AD^2 - 3.125AD^2 + 0.125AD^3, or
0.125AD^3 - 21.1875 AD^2 + 451.5625 + 360 = 0, or
0.125AD^3 - 21.1875 AD^2 + 811.5625 = 0, or
AD^3 - 168.5 AD^2 + 6492.5 = 0, or
By trial and error, AD = 6.3272
Check: AD^3 - 168.5 AD^2 + 6492.5
6.3272^3 - 168.5*6.3272^2 + 6492.5
253.3- 6745.6 + 6492.5 = 0.2 as against 0
Hence AD = 6.3272 cm.