152k views
19 votes
Prove that the quadrilateral defined by the points M(2,4), I(1,2), L(5,1), K(4,−1) is a parallelogram. Which Formula did you select and Why?

1 Answer

5 votes

Answer:

The given points isn't define a parallelogram.

Explanation:

As we know,

⇒ The opposite sides of a parallelogram are equal.

The given points are:

(x1, y1) = M(2,4)

(x2, y2) = I(1,2)

(x3, y3) = L(5,1)

(x4, y4) = K(4,−1)

Now,

On applying the Distance formula, we get

MI =
√((x 2 - x 1)^2 + (y 2 - y 1)^2)

On substituting the given values, we get

=
√((1 - 2)^2 + (2- 4)^2)

=
√(1+4)

=
√(5)

IL =
√((x 3 - x 2)^2 + (y 3 - y 2)^2)

=
√((5-1)^2+(1-2)^2)

=
√(16+1)

=
√(17)

LK =
√((x 4 - x 3)^2 + (y 4 - y 3)^2)

=
√((4-5)^2+(-1-1)^2)

=
√(1+4)

=
√(5)

KM =
√((x 4 - x 1)^2 + (y 4 - y 1)^2)

=
√((4-2)^2+(-1-4)^2)

=
√(4+25)

=
√(29)

Here, MI = LK = √5

IL ≠ KM

User Fred Foo
by
4.4k points