129,103 views
32 votes
32 votes
According to the Fundamental Theorem of Algebra, which polynomial function has exactly 8 roots?

PLS HELP IM TIMED

According to the Fundamental Theorem of Algebra, which polynomial function has exactly-example-1
User Sivadas Rajan
by
3.3k points

1 Answer

17 votes
17 votes

Answer:

Option (1)

Explanation:

Fundamental theorem of Algebra states degree of the polynomial defines the number of roots of the polynomial.

8 roots means degree of the polynomial = 8

Option (1)

f(x) = (3x² - 4x - 5)(2x⁶- 5)

When we multiply (3x²) and (2x⁶),

(3x²)(2x⁶) = 6x⁸

Therefore, degree of the polynomial = 8

And number of roots = 8

Option (2)

f(x) = (3x⁴ + 2x)⁴

By solving the expression,

Leading term of the polynomial = (3x⁴)⁴

= 81x¹⁶

Therefore, degree of the polynomial = 16

And number of roots = 16

Option (3)

f(x) = (4x² - 7)³

Leading term of the polynomial = (4x²)³

= 64x⁶

Degree of the polynomial = 6

Number of roots = 6

Option (4)

f(x) = (6x⁸ - 4x⁵ - 1)(3x² - 4)

By simplifying the expression,

Leading term of the polynomial = (6x⁸)(3x²)

= 18x¹⁰

Degree of the polynomial = 10

Therefore, number of roots = 10

User Jayprakash Dubey
by
3.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.