Answer:
![Average = 4411.4ft^3](https://img.qammunity.org/2022/formulas/mathematics/college/kfoj4pst0jg8bcp78wmd1aoh47vb4cksp7.png)
Explanation:
Given [Missing from the question]
![Rate = 1ft^3/min](https://img.qammunity.org/2022/formulas/mathematics/college/k9yzjb25r6556qriopr5wxiwwlecbphhw3.png)
![Radius = 3ft](https://img.qammunity.org/2022/formulas/mathematics/college/rurcumhvgemuesdgwx659uoma3syeqs6jc.png)
![Height = 5ft](https://img.qammunity.org/2022/formulas/mathematics/college/9np7v0ca2pm5xqe60731c1fsnths46kxg6.png)
![Density = 62.4lb/ft^3](https://img.qammunity.org/2022/formulas/mathematics/college/q3i9mqd9ggi3fnscvdgf0krc97p1hbd12l.png)
The volume (V) of a cylindrical tank is:
![V = \pi r^2h](https://img.qammunity.org/2022/formulas/advanced-placement-ap/college/578lxb5tn067wdnbgzsfmw72qvtq20zffw.png)
This gives:
![V = \pi * 3^2 * 5](https://img.qammunity.org/2022/formulas/mathematics/college/e5jkktoj6d39pa8fntpzfslyf2sds0tpc2.png)
![V = \pi * 45](https://img.qammunity.org/2022/formulas/mathematics/college/4rfn12kv1lhaw1wmwohuybzhm7igbwkh4c.png)
![V = 3.142 * 45](https://img.qammunity.org/2022/formulas/mathematics/college/53tex9o0pg5l0638hzvabztyzcxdoj5t9x.png)
![V = 141.39ft^3](https://img.qammunity.org/2022/formulas/mathematics/college/ohquqk06dj2mr3ill7cvltenlr645avn4i.png)
If the rate is given as:
Then the time to fill the tank is:
![Time = (Volume)/(Rate)](https://img.qammunity.org/2022/formulas/mathematics/college/yb6d1spgfjnj35ez9kruwgge3ep9ww43re.png)
![Time = (141.39ft^3)/(1ft^3/min)](https://img.qammunity.org/2022/formulas/mathematics/college/d5cmyf8riju3klsr5jdqy5fuqup3034dqx.png)
The weight of the water when the tank is filled up is:
![Weight = 141.39ft^3 * 62.4lb/ft^3](https://img.qammunity.org/2022/formulas/mathematics/college/z96zp5rh1eipd9i0zm10rbevr3mitz05qm.png)
![Weight = 141.39 * 62.4lb](https://img.qammunity.org/2022/formulas/mathematics/college/wswt9jzy9zsid8qchape23maiwl5q08rug.png)
![Weight = 8822.736\ lb](https://img.qammunity.org/2022/formulas/mathematics/college/atgceqa6pfuz32u2chivmacqj2a6tim626.png)
The conjecture about the average weight is:
![Average = (1)/(2) * 8822.736\ lb](https://img.qammunity.org/2022/formulas/mathematics/college/us0q32ha2ti81aylf8qil3qvzopk2qydqa.png)
![Average = 4411.368\ lb](https://img.qammunity.org/2022/formulas/mathematics/college/vallejdxd77i0dbg3pca9t9rtf1san0nt3.png)
To check by integrating:
After time t:
The volume (V) of the water in tank is
![V = \int\limits^(141.39)_0 {t} \, dt](https://img.qammunity.org/2022/formulas/mathematics/college/y8ddc6jclbcchmxrh0w50s78qzhl6hhabv.png)
i.e. from time = 0 to 141.39 minutes
Integrate:
![V = (1)/(2)t^2 |\limits^(141.39)_0](https://img.qammunity.org/2022/formulas/mathematics/college/vvvzpdpmzz9f5ogj5yafx7y926141i8cbv.png)
Divide by t
![(V)/(t) = (1)/(2)t |\limits^(141.39)_0](https://img.qammunity.org/2022/formulas/mathematics/college/mcpbnufhmhlu5keiv9f1r1xf2t2e1g3cro.png)
![(V)/(t) = (1)/(2)(141.39-0)](https://img.qammunity.org/2022/formulas/mathematics/college/d7tjoh36nnow5itubpzbsk6ze654z77bpm.png)
![(V)/(t) = (1)/(2)(141.39)](https://img.qammunity.org/2022/formulas/mathematics/college/ztk3e59m092kmpc5zu65h7l71980her2ka.png)
![(V)/(t) = (1)/(2)*141.39](https://img.qammunity.org/2022/formulas/mathematics/college/trmfvi3ba0k7irnqh4hdr42vdd5xskf93i.png)
![(V)/(t) = 70.695](https://img.qammunity.org/2022/formulas/mathematics/college/2htb0ze6qdtsbu3xrvqpp7f0ap8yxgtt0y.png)
Average Volume =
![Average = (V)/(t) * Density](https://img.qammunity.org/2022/formulas/mathematics/college/w625aox0h4xh4kc9w2gbroxbir1fgj2vog.png)
![Average = 70.695 * 62.4](https://img.qammunity.org/2022/formulas/mathematics/college/nq0bpnvcumpcegccsk5aq0d732b1il0qcw.png)
![Average = 4411.368](https://img.qammunity.org/2022/formulas/mathematics/college/1fg5gt3tv5errz7bmp9tm52xj21setcqqe.png)
![Average = 4411.4ft^3](https://img.qammunity.org/2022/formulas/mathematics/college/kfoj4pst0jg8bcp78wmd1aoh47vb4cksp7.png)
The calculated value of average volume in both cases is:
![Average = 4411.4ft^3](https://img.qammunity.org/2022/formulas/mathematics/college/kfoj4pst0jg8bcp78wmd1aoh47vb4cksp7.png)