219k views
14 votes
Solve the given differential equation by using an appropriate substitution. The DE is a Bernoulli equation. t2 (dy/dt) + y2 = ty

1 Answer

2 votes

Answer:

Explanation:


t^2 (dy)/(dt)+ y^2 = ty \\ \\ t^2 (dy)/(dt)-ty = -y^2


\text{by dividing both sides by }{y^2},\text{ we have:}


(t^2)/(y^2)(dy)/(dt)- (ty)/(y^2)= -1


(t^2)/(y^2)(dy)/(dt)- t(1)/(y)= -1


\text{by dividing both sides by }t^2; \text{we have;}


(1)/(y^2)(dy)/(dt)- (1)/(t)(1)/(y)= -(1)/(t^2)--- (i)


Let \ v = (1)/(y)


(dv)/(dt)= -(1)/(y^2)(dy)/(dt)


-(dv)/(dt)= (1)/(y^2)(dy)/(dt)


\text{replace in equation (1); we have}


- (dv)/(dt)-(1)/(t)v = -(1)/(t^2)


- \Big ( (dv)/(dt)+ (1)/(t)v \Big) = -(1)/(t^2)


(dv)/(dt)+(1)/(t)v = (1)/(t^2)


\text{relating above with} (dv)/(dt)+ P(t) v = Q(t) \text{, we have:}


P(t) = (1)/(t) \ \ \ , \ \ \ \ Q(t) = (1)/(t^2)


\mu (t) = e^(\int P(t) \ dt )= e ^{\int (1)/(t) \ dt}= e^(In|t|)= t


v\mu(t) = \int \mu(t) Q(t) dt + C


vt = \int (t) ((1)/(t^2))dt + C


vt = \int (1)/(t)dt + C


vt = Int+C


v = (In \ t + C)/(t)


\text{substitute } v = (1)/(y)}, we \ get}


(1)/(y)=(In \ t +C)/(t)


\mathbf{y = (t)/(In \ t + C)}

User Jtruelove
by
4.6k points