Answer:
a. 104.5 C b. 7.94 × 10⁶ A/m² c. 5.83 × 10⁻⁴ m/s
Step-by-step explanation:
a. How much electric charge passes through the starter motor?
Using Q = It where Q = electric charge passing through the starter motor, I = current = 110 A and t = time = 0.95 s
So, Q = It = 110 A × 0.95 s = 104.5 C
b. What is the current density in the wire?
The current density, J = I/A where I = current = 110 A and A = cross-sectional area = πd²/4 where d = diameter of copper wire = 4.20 mm = 4.20 × 10⁻³ m
So, J = I/A
= I/πd²/4
= 4I/πd²
= 4 × 110 A/π(4.20 × 10⁻³ m)²
= 440 A/55.42 × 10⁻⁶ m²
= 7.94 × 10⁶ A/m²
c. How far does an electron travel along the wire while the starter motor is on? (The density of conduction electrons in copper is n = 8.50×1028 1/m3.)
To find how far the electron travels, we need to find the electron drift velocity from
J = nev where J = current density = 7.94 × 10⁶ A/m², n = electron density = 8.50 × 10²⁸ m⁻³, e = electron charge = 1.602 × 10⁻¹⁹ C, v = drift velocity of electrons and A = cross-sectional area of wire = πd²/4 where d = diameter of copper wire = 4.20 mm = 4.20 × 10⁻³ m
So, v = J/ne
Substituting the values of the variables into the equation, we have
v = 7.94 × 10⁶ A/m² ÷ (8.50 × 10²⁸ m⁻³ × 1.602 × 10⁻¹⁹ C)
v = 7.94 × 10⁶ A/m² ÷ (13.617 × 10⁹ Cm⁻³)
v = 0.583 × 10⁻³ m/s
v = 5.83 × 10⁻⁴ m/s