118k views
18 votes
Integrating sums of functions

Integrating sums of functions-example-1
User Weihui Guo
by
4.2k points

1 Answer

12 votes

Answer:

(a) -12

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Calculus

Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Swapping Limits]:
\displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:
\displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Explanation:

Step 1: Define


\displaystyle \int\limits^6_4 {f(x)} \, dx = 5


\displaystyle \int\limits^4_(10) {f(x)} \, dx = 8


\displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx

Step 2: Solve Pt. 1

  1. [Integral] Rewrite [Integration Property - Addition]:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = \int\limits^(10)_6 {4f(x)} \, dx + \int\limits^(10)_6 {10} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = 4\int\limits^(10)_6 {f(x)} \, dx + 10\int\limits^(10)_6 {} \, dx

Step 3: Redefine

Manipulate the given integral values.

  1. [Integrals] Combine [Integration Property - Splitting Integral]:
    \displaystyle \int\limits^6_4 {f(x)} \, dx + \int\limits^4_(10) {f(x)} \, dx = \int\limits^6_(10) {f(x)} \, dx
  2. [Integral] Rewrite:
    \displaystyle \int\limits^6_(10) {f(x)} \, dx = \int\limits^6_4 {f(x)} \, dx + \int\limits^4_(10) {f(x)} \, dx
  3. [Integral] Substitute in integrals:
    \displaystyle \int\limits^6_(10) {f(x)} \, dx = 5 + 8
  4. [Integral] Add:
    \displaystyle \int\limits^6_(10) {f(x)} \, dx = 13
  5. [Integral] Rewrite [Integration Property - Swapping Limits]:
    \displaystyle -\int\limits^(10)_6 {f(x)} \, dx = 13
  6. [Integral] [Division Property of Equality] Isolate integral:
    \displaystyle \int\limits^(10)_6 {f(x)} \, dx = -13

Step 4: Solve Pt. 2

  1. [Integral] Substitute in integral:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = 4(-13) + 10\int\limits^(10)_6 {} \, dx
  2. [Integral] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(x) \bigg| \limits^(10)_6
  3. [Integral] Evaluate [Integration Rule - FTC 1]:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(10 - 6)
  4. [Integral] (Parenthesis) Subtract:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(4)
  5. [Integral] Multiply:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = -52 + 40
  6. [Integral] Add:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = -12

Topic: AP Calculus AB/BC

Unit: Integration

Book: College Calculus 10e

User Yogesh Jilhawar
by
4.8k points