118k views
18 votes
Integrating sums of functions

Integrating sums of functions-example-1
User Weihui Guo
by
8.6k points

1 Answer

12 votes

Answer:

(a) -12

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality

Calculus

Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Swapping Limits]:
\displaystyle \int\limits^b_a {f(x)} \, dx = -\int\limits^a_b {f(x)} \, dx

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration Property [Splitting Integral]:
\displaystyle \int\limits^c_a {f(x)} \, dx = \int\limits^b_a {f(x)} \, dx + \int\limits^c_b {f(x)} \, dx

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Explanation:

Step 1: Define


\displaystyle \int\limits^6_4 {f(x)} \, dx = 5


\displaystyle \int\limits^4_(10) {f(x)} \, dx = 8


\displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx

Step 2: Solve Pt. 1

  1. [Integral] Rewrite [Integration Property - Addition]:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = \int\limits^(10)_6 {4f(x)} \, dx + \int\limits^(10)_6 {10} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = 4\int\limits^(10)_6 {f(x)} \, dx + 10\int\limits^(10)_6 {} \, dx

Step 3: Redefine

Manipulate the given integral values.

  1. [Integrals] Combine [Integration Property - Splitting Integral]:
    \displaystyle \int\limits^6_4 {f(x)} \, dx + \int\limits^4_(10) {f(x)} \, dx = \int\limits^6_(10) {f(x)} \, dx
  2. [Integral] Rewrite:
    \displaystyle \int\limits^6_(10) {f(x)} \, dx = \int\limits^6_4 {f(x)} \, dx + \int\limits^4_(10) {f(x)} \, dx
  3. [Integral] Substitute in integrals:
    \displaystyle \int\limits^6_(10) {f(x)} \, dx = 5 + 8
  4. [Integral] Add:
    \displaystyle \int\limits^6_(10) {f(x)} \, dx = 13
  5. [Integral] Rewrite [Integration Property - Swapping Limits]:
    \displaystyle -\int\limits^(10)_6 {f(x)} \, dx = 13
  6. [Integral] [Division Property of Equality] Isolate integral:
    \displaystyle \int\limits^(10)_6 {f(x)} \, dx = -13

Step 4: Solve Pt. 2

  1. [Integral] Substitute in integral:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = 4(-13) + 10\int\limits^(10)_6 {} \, dx
  2. [Integral] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(x) \bigg| \limits^(10)_6
  3. [Integral] Evaluate [Integration Rule - FTC 1]:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(10 - 6)
  4. [Integral] (Parenthesis) Subtract:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = 4(-13) + 10(4)
  5. [Integral] Multiply:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = -52 + 40
  6. [Integral] Add:
    \displaystyle \int\limits^(10)_6 {[4f(x) + 10]} \, dx = -12

Topic: AP Calculus AB/BC

Unit: Integration

Book: College Calculus 10e

User Yogesh Jilhawar
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories