Answer:
![\displaystyle A = 7](https://img.qammunity.org/2022/formulas/mathematics/college/wnbtzrixtfks28w8scwg2hg71oelw4uogw.png)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Pre-Calculus
- Parametric to Rectangular Form Conversion
Calculus
Integrals - Area under the curve
Area of a Curve Formula:
![\displaystyle A = \int\limits^b_a {f(x)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/ithy6wfful4k7vewyfbzwx97l448e5ml5v.png)
Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C](https://img.qammunity.org/2022/formulas/mathematics/high-school/mbzma5ko9adwy11a9ubqwf8xelp4oacdkf.png)
Integration Property [Multiplied Constant]:
![\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/ln748bgla1kj7bmw1t7we4708kfq0vdpxy.png)
Integration Rule [Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)](https://img.qammunity.org/2022/formulas/mathematics/college/q5am2gy1b61evzpfs9m2cpql6uqpdre726.png)
Explanation:
*Note:
The area under the curve is essentially the definition of an integral.
Step 1: Define
Parametric
x = t
y = 3t²
1 ≤ t ≤ 2
Step 2: Rewrite
Rewrite parametric to rectangular form and change bounds of integration.
- [Parametric] Substitute in t: y = 3x²
- [Parametric] Plug in values of t [Bounds]: 1 ≤ x ≤ 2
Step 3: Find Area
Integration.
- Substitute in variables/function [Area]:
![\displaystyle A = \int\limits^2_1 {3x^2} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/oi87w7n9ag6noat49vp4ehp2chwiyhbpoy.png)
- [Area] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle A = 3\int\limits^2_1 {x^2} \, dx](https://img.qammunity.org/2022/formulas/mathematics/college/1k6fymc5rqakad9kbweye9k68ojcom4h64.png)
- [Area] Integrate [Integration Rule - Reverse Power Rule]:
![\displaystyle A = 3((x^3)/(3)) \bigg| \limit^2_1](https://img.qammunity.org/2022/formulas/mathematics/college/p28mdqf3lpfnm9c99k8afc0hgd2rh7p1yf.png)
- [Area] Evaluate [Integration Rule - Fundamental Theory of Calculus 1]:
![\displaystyle A = 3((2^3)/(3) - (1^3)/(3))](https://img.qammunity.org/2022/formulas/mathematics/college/p4toutjybqzej3s80n9o7nuv404nhjtd6n.png)
- [Area] (Parenthesis) [Fraction] Evaluate exponents:
![\displaystyle A = 3((8)/(3) - (1)/(3))](https://img.qammunity.org/2022/formulas/mathematics/college/8dxo3buhp76cf17fdu38w3gauxtrkwfeg8.png)
- [Area] (Parenthesis) Subtract:
![\displaystyle A = 3((7)/(3))](https://img.qammunity.org/2022/formulas/mathematics/college/lk3ksxt74txdtfkh6lpsh9fnno2av9gmty.png)
- [Area] Multiply:
![\displaystyle A = 7](https://img.qammunity.org/2022/formulas/mathematics/college/wnbtzrixtfks28w8scwg2hg71oelw4uogw.png)
Topic: AP Calculus AB/BC
Unit: Area under the curve
Book: College Calculus 10e